	Qualità				NiMo6					Scheda Dati							
Composizione chimica C% Si% Mn% P% S% Cr% Mo% Ni% Cu% max ma					ISO 68	33-2: 20)18			bonii	ica			Lucefin Group			
Sign	Numero				1.6582	2									rev. 202	4	
100	Compos	sizione	chim	nica													
20-0-38 0,10-040 0,50-0-80 0,025 0,035 1,30-1,70 0,15-0,30 1,30-1,70 0,40 Soostamenti armete de 0.03 ± 0,03 ± 0,05 + 0,05 + 0,05 + 0,05 Prub essere formito con un contenuto di silicio inferiore. In questo caso, devono essere usati mezzi alternativi di disossidazione. Temperature in ° C C C Prubrati C Pr	С%			Mn%					Cr%	Mo%	l	Ni%					
± 0.03 ± 0.03 ± 0.04 + 0.005 ± 0.005 ± 0.05 ± 0.05 ± 0.05 + 0.05 per analisi di prodo e "Proble essere formitto con un contenuto di sillicio inferiore. In questo caso, devono essere usati mezzi alternativi di disossidazione. Tempreraturre in °C Deformazione Normalizzazione HN Normalizzazione HQ e Propinsi di acado e a caldo e Normalizzazione HQ e Propinsi di acado e a caldo e Normalizzazione HQ e Propinsi di acado e a caldo e Normalizzazione HQ e Propinsi di acado e a caldo e Normalizzazione HQ e Propinsi di acado e a caldo e Normalizzazione HQ e Propinsi di acado e normalizzazione HQ e Propinsi di acado e normalizzazione PQ e N	0.30-0.38	0.10-0).40	0.50-0.					1.30-1.70	0.15-0.	30	1.30-1.70			Scostan	nenti ar	nmess
Public essere formito con un contenuto di silicio inferiore. In questo caso, devono essere usati mezzi alternativi di discossidazione.					· · · · · · · · · · · · · · · · · · ·										per anal	isi di pr	odotto
Temperature in °C		ere forni	to con	un conf	tenuto	di silicio	inferiore.	ln que	esto caso		ssere	usati mez	zzi alter	nativi d	•		
Potematication Pot																	
				malizza	azione	7	Гетрга	T	empra		Ri	nvenime	nto		Distens	ione	
Ricottura di lavorabilità + A Ricottura di lavorabilità +	a caldo					4	+Q		•			•					
Presidential Pres	1100-900		860-	-870		8	360	8	30		54	0-660			50 sotto	la	
Ricottura di avorabilità +A Ricottura di avorabilità +A Sisotemica + Siso			aria					а	icqua		ar	ia					
Selection Sele																	
aria aria 248)													ıra				ì
Proprietà meccaniche Prova di trazione e resilienza in longitudinale a 20 °C R																	
Proprietà meccaniche 34CrNiMo6 Laminati a caldo caratteristiche meccaniche allo stato bonifica ISO 683-2: 2018 diametro /spess. mm R R Rp 0.2 A% Z% Kv2 HBW oltre fino a N/mm² N/mm² min. min. J min. per informazione 16/8 1200-1400 1000 9 40 - 359-404 16/8 40/20 1100-1300 900 10 45 45 331-330 100/60 160/100 900-1100 700 12 55 45 298-359 100/60 160/100 900-1100 700 12 55 45 271-331 160/100 250/160 800-950 600 13 55 45 240-286 Tabella di rinvenimento valori a temperatura ambiente su tondo Ø 60 mm dopto tempra a 850 °C in olio HB 525 500 468 450 371 344 319 271 240 HBR 525 500 468 450 371 344 319 271 240 HBR 525 500 468 450 371 344 319 271 240 HBR 525 500 468 450 371 344 319 271 240 HBR 525 500 468 450 371 344 180 20 22 R N/mm² 1950 1850 1700 1500 1260 1150 1050 900 800 Rp 0.2 N/mm² 1450 1480 1450 1350 1180 980 950 700 680 A % 10 10 10 10 12 13 13.4 18 20 22 R N/mm² 1450 1480 1450 1350 1180 980 950 700 680 Kv J 18 18 18 18 18 18 18 18 18 18 20 22 C % 48 50 52 58 62 62 68 68 70 Kv J 18 18 18 18 18 18 18 18 70 90 110 120 Rinvenimento °C 100 200 300 400 500 550 600 650 700 Esperienza LUCEFIN Fucinato tondo 520 mm temprato a 870 °C acqua e rinvenuto a 630 °C aria Prove in longitudinales Valueria Rp 0.2 A Z Kv +20 °C Kv -40 °C HB N/mm² N/mm² N/mm² % % J J S N/mm² N/mm² N/mm² % % J J S N/mm² N/mm² N/mm² % % J J S S D Mm² N/mm² N/mm² % % J J S S D Mm² N/mm² N/mm² % % J J Frote in longitudinales R Prove in longitudinales R Prove in longitudinales R Prove in longitudinales R Prove in longitudinales Prove in longitudinales C -70 -60 -40 -20 0 +20 +50 +80 +80 +18 % fibrosità 3 6 11 1 15 24 53 100 100 100 FATT KV J media 22 24 27 42 51 70 142 150 68 Composizione chimica % P		2481						ю а	icqua								
Standard	(nd illax 2	240)	500	poi ana	1	ı	1110 a 300				/1	5	770		320	10	0
Prova di trazione e resilienza in longitudinale a 20 °C Prova di trazione e resilienza in longitudinale a 20 °C Prova di trazione e resilia e resilia in la di transizione e resilia e re	Propriet	à mec	canic	he													
Mg Mg Ngm² Ngm	34CrNiMo	6 Lami									683-2	2: 2018					
oltre fino a N/mm² N/mm² min. min. min. J min. per informazione 16/8 1200-1400 1000 9 40 - 359-404 16/8 40/20 1100-1300 900 10 45 45 331-380 40/20 100/60 1000-1200 800 11 50 45 298-359 100/60 160/100 900-1100 700 12 55 45 271-331 160/100 250/160 800-950 600 13 55 45 240-286 Tabella di rinvenimento valori a temperatura ambiente su tondo Ø 60 mm dopo tempra a 850 °C in olio HB 525 500 468 450 371 344 319 271 240 HRC 53 51.5 49 46.5 40 37 34 28 22 R N/mm² 1950 1850 1700 1500 1260 1150 1050 900 800 Rp 0.2 N/mm² 1450 1480 1450 1350 1180 980 950 700 680 Rp 0.2 N/mm² 1450 1480 1450 1350 1180 980 950 700 680 A % 10 10 10 10 12 13 13,4 18 20 22 Z % 48 50 52 58 62 62 68 68 70 Kr J 18 18 18 18 45 70 90 110 120 Rinvenimento °C 100 200 300 400 500 550 600 650 700 Esperienza LUCEFIN Fucinato tondo 520 mm temprato a 870 °C acqua e rinvenuto a 630 °C aria Profondità dalla Prove in longitudinale Superficie R Rp 0.2 A Z Kv +20 °C Kv -40 °C HB Italiana Prove in longitudinale Superficie R Rp 0.2 A Z Kv +20 °C Kv -40 °C HB Italiana Prove in longitudinale Superficie R Rp 0.2 A Z Kv +20 °C Kv -40 °C HB Italiana Prove in longitudinale Superficie R Rp 0.2 A Z Kv +20 °C Kv -40 °C HB Italiana Rp 20 820 18,5 64,0 - 1110-118-118 280 Esperienza LUCEFIN Fucinato tondo 520 mm temprato a 870 °C acqua e rinvenuto a 630 °C aria Profondità dalla Prove in longitudinale Superficie R Rp 0.2 A Z Kv +20 °C Kv -40 °C HB Italiana Rp 20 820 18,5 64,0 - 1110-118-118 280 Esperienza LUCEFIN Fucinato tondo 520 mm temprato a 870 °C acqua e rinvenuto a 630 °C aria Profondità dalla Prove in longitudinale Superficie R Rp 0.2 A Z Kv +20 °C Kv -40 °C HB Italiana Rp 20 820 18,5 64,0 - 1110-118-118 280 Esperienza LUCEFIN Fucinato tondo 520 mm temprato a 870 °C acqua e rinvenuto a 630 °C aria Profondità dalla Prove in longitudinale Superficie R Rp 0.2 A Z Kv +20 °C Kv -40 °C HB Italiana Rp 20 820 18,5 64,0 - 1110-118-118 280 Esperienza LUCEFIN Fucinato tondo 520 °C Rp 3 70 70 70 70 70 70 70 70 70 70 70 70 70	diametro /	spess.		va di tra	azione												
16/8	mm																
16/8	oltre										J n	nin.			one		
40/20											-						
100/60																	
Tabella di rinvenimento valori a temperatura ambiente su tondo Ø 60 mm dopo tempra a 850 °C in olio HB																	
Tabella di rinvenimento valori a temperatura ambiente su tondo Ø 60 mm dopo tempra a 850 °C in olio HB 525 500 468 450 371 344 319 271 240 HRC 53 51.5 49 46.5 40 37 34 28 22 R N/mm² 1950 1850 1700 1500 1260 1150 1050 900 800 Rp 0.2 N/mm² 1450 1480 1450 1350 1180 980 950 700 680 A % 10 10 10 12 13 13.4 18 20 22 Z % 48 50 52 58 62 62 68 68 70 Kv J 18 18 18 18 45 70 90 110 120 Rinvenimento °C 100 200 300 400 500 550 600 650																	
HB 525 500 468 450 371 344 319 271 240 HRC 53 51.5 49 46.5 40 37 34 28 22 R N/mm² 1950 1850 1700 1500 1260 1150 1050 900 800 Rp 0.2 N/mm² 1450 1480 1450 1350 1180 980 950 700 680 A % 10 10 10 12 13 13.4 18 20 22 Z % 48 50 52 58 62 62 68 68 70 Kv J 18 18 18 18 45 70 90 110 120 Rinvenimento °C 100 200 300 400 500 550 600 650 700 Esperienza LUCEFIN Fucinato tondo 520 mm temprato																	
HRC		i rinveni												0			
R	НВ					4	168	4	50	371		4					
Rp 0.2 N/mm² 1450 1480 1450 1350 1180 980 950 700 680 A % 10 10 10 12 13 13.4 18 20 22 Z % 48 50 52 58 62 62 68 68 70 Kv J 18 18 18 18 45 70 90 110 120 Esperienza LUCEFIN Fucinato tondo 520 mm temprato a 870 °C acqua e rinvenuto a 630 °C aria Profondità dalla trattata Prove in longitudinale Prove in longitudinale 870 °C acqua e rinvenuto a 630 °C aria C HB R pou in longitudinale 870 °C acqua e rinvenuto a 630 °C aria C Kv +20 °C kv -40 °C Kv -40 °C HB N/mm² N/mm² % % J J J 20 MB 110-118-118 280 113 raggio 900 755 15,6 60,0 <td>HRC</td> <td></td> <td>53</td> <td></td> <td>51.5</td> <td>4</td> <td>19</td> <td>4</td> <td>6.5</td> <td>40</td> <td>37</td> <td></td> <td>34</td> <td></td> <td>28</td> <td>22</td> <td></td>	HRC		53		51.5	4	19	4	6.5	40	37		34		28	22	
No.	R N	/mm²	1950)	1850	1	1700	1	500	1260	11:	50	1050		900	80	0
The state The	Rp 0.2 N	/mm²	1450)	1480	1	1450	1	350	1180	980)	950		700	68	0
Rinvenimento °C 100 200 300 400 500 550 600 650 700	A %)	10		10	1	10	1	2	13	13.	4	18		20	22	
Rinvenimento °C 100 200 300 400 500 550 600 650 700	Z %)	48		50	5	52	5	i8	62	62		68		68	70	
Profondità dalla superficie trattata Prove in longitudinale Prove	Kv J		18		18	1	18	1	8	45	70		90		110	12	.0
Profondità dalla superficie trattata Prove in longitudinale R	Rinvenime	ento °C	100		200	3	300	4	00	500	550	0	600		650	70	0
Profondità dalla superficie trattata Prove in longitudinale R	Esperienz	a LUCE I	FIN Fι	ıcinato	tondo	520 mr	m temprato	a 8	70 °C ac	qua e rinve	enuto	a 630 °C	aria				
R																	
trattata N/mm² N/mm² % J J 25 mm 920 820 18,5 64,0 - 110-118-118 280 1/3 raggio 900 755 15,6 60,0 - 48-44-45 270 1/2 diametro 870 730 12,8 46,0 70-74-68 25-28-25 262 FATT (aspetto della frattura alla temperatura di transizione) °C -70 -60 -40 -20 0 +20 +50 +80 +18 % fibrosità 3 6 11 15 24 53 100 100 FATT Kv J media 22 24 27 42 51 70 142 150 68 Composizione chimica % C Si Mn P S Cr Mo Ni V Cu Sn As Sb Al H2 O2 N	superficie				-		Rp 0.2	-	\	Z	Κν	+20 °C	K v -4	lo °C		Н	В
25 mm 920 820 18,5 64,0 - 110-118-118 280 1/3 raggio 900 755 15,6 60,0 - 48-44-45 270 1/2 diametro 870 730 12,8 46,0 70-74-68 25-28-25 262 FATT (aspetto della frattura alla temperatura di transizione) **C -70 -60 -40 -20 0 +20 +50 +80 +18 % fibrosità 3 6 11 15 24 53 100 100 FATT K∨ J media 22 24 27 42 51 70 142 150 68 **Composizione chimica %* C Si Mn P S Cr Mo Ni V Cu Sn As Sb Al H₂ O₂ N	trattata			m ²			•										
1/3 raggio 900 755 15,6 60,0 - 48-44-45 270 1/2 diametro 870 730 12,8 46,0 70-74-68 25-28-25 262 FATT (aspetto della frattura alla temperatura di transizione) °C -70 -60 -40 -20 0 +20 +50 +80 +18 % fibrosità 3 6 11 15 24 53 100 100 FATT Kv J media 22 24 27 42 51 70 142 150 68 Composizione chimica % C Si Mn P S Cr Mo Ni V Cu Sn As Sb Al H2 O2 N	25 mm												110-1	18-118		28	30
1/2 diametro 870 730 12,8 46,0 70-74-68 25-28-25 262 FATT (aspetto della frattura alla temperatura di transizione) °C -70 -60 -40 -20 0 +20 +50 +80 +18 % fibrosità 3 6 11 15 24 53 100 100 FATT Kv J media 22 24 27 42 51 70 142 150 68 Composizione chimica % C Si Mn P S Cr Mo Ni V Cu Sn As Sb Al H2 O2 N																	
FATT (aspetto della frattura alla temperatura di transizione) **C											70.	74-68					
°C -70 -60 -40 -20 0 +20 +50 +80 +18 % fibrosità 3 6 11 15 24 53 100 100 FATT Kv J media 22 24 27 42 51 70 142 150 68 Composizione chimica % C Si Mn P S Cr Mo Ni V Cu Sn As Sb Al H2 O2 N				tura all	a temn				_,0	10,0	, 0		20 20				
% fibrosità 3 6 11 15 24 53 100 100 FATT Kv J media 22 24 27 42 51 70 142 150 68 Composizione chimica % ppm C Si Mn P S Cr Mo Ni V Cu Sn As Sb Al H2 O2 N	,	spoul de		a all					20	0	+2	n	+50		+80	+	I R
Kv J media 22 24 27 42 51 70 142 150 68 Composizione chimica % ppm C Si Mn P S Cr Mo Ni V Cu Sn As Sb Al H2 O2 N		<u> </u>															
Composizione chimica %ppmCSiMnPSCrMoNiVCuSnAsSbAlH2O2N																	
C Si Mn P S Cr Mo Ni V Cu Sn As Sb Al H2 O2 N				0/_	24		<u>- 1</u>	4	٠٧	JI	70		144			00	,
					0	Cr	Ma	Ni	\/	Cu	2n	۸۵	Ch	٨١		00	N2
0.55																	
	ს.აა U.	24 U.	uı (J.UU <i>1</i>	0.002	1.00	U.ZØ	1.00	0.00	U.13 (טטט.נ	0.007	0.004	0.014	1.30	JΖ	70

00=:		Trafilato									Pelato +				
sezione mm		Prova di trazione in longitudinale a 20 °C									in longitu				
		R		Rp 0.2		Α%	HBW		R		P 0.2		\%		HBW
oltre	fino a	N/mm ²		N/mm ²	² min	min	max.		N/mm ²	N	I/mm² mi	n n	nin	l	max
5	10	-		-		-	308		-	-		-		-	
10	16	-		-		-	298		-	-		-		-	•
16	40	-		-		-	293		-	-		-		- :	248
40	63	-		-		-	288		-	-		-			248
63	100	-		-		-	288		-	-		-			248
			6 1. 4	OT 0					1		, 5.		OT 01		
	ato bonificat				منائد بطنم ما	2 2 20 °	C c) e)				cato e Pel				
sezione	e mm	R	di trazion			A %		-20 °C	R		e in longit		le a ∠∪ \ %		⟨v₂ + 20 °C
oltro	fine	N/mm ²		Rp 0.2 N/mm ²					N/mm ²		Rp 0.2 N/mm² m		1 70 nin		
oltre 5 ^{b)}	fino a	1000-1			- min	min	J mir		IN/IIIII12 -						J min
				770		8	-		-	-				•	
10	16	1000-1		750		8	-		- 4400 4	-			•	-	
16	40	1000-1		720		9	-		1100-13		900		0		1 0
40	63	1000-1		650		10	-		1000-12		300		1		1 5
53	100	1000-1		650		10	-	•	1000-12		300		1		1 5
) per s	piatti e prof pessori infe concordate	riori a 5 m	ım le car						a) valori	validi ar	nche per +	C+Q1			
4CrNi	i Mo6 1.658	2 Fucinat	o bonific	ato IIN	I EN 102	250-3· 20	001								
	ro /spess.		di trazion				701								
nm	ю торово.	R	ii tiuzion	Rp 0.2		A%	Α%		Kv		Kv		НВ		
oltre	fino a	N/mm ²	min	N/mm ²		min ((T)	J min (L		J min (T)		min		
nuc	250/160		111111	600	111111	13	9	(1)	45		22		240		
250/16				540		14	10		45		22		225		
500/33				490		15	11		40		20		213		
	gitudinale		nziala	430		10	11		70		20		210		
	3-2-2018		' ما ده ده ده د												
					iny in F	IRC gra	andezza	grano 5	minimo						
distanz	a dall'estre	mità temp	rata in m	ım		•		_							
distanz	a dall'estre	mità tempi 5	rata in m	nm 9	11	13	15	20	25	30	35	40	45		H
distanz min	ta dall'estre 1.5 3 50 50	mità tempi 5 50	rata in m 7 50	nm 9 49	11 48	13 48	15 48	20 48	25 47	47	47	46	45	5 44	H normale
distanz nin	a dall'estre	mità tempi 5	rata in m	nm 9	11	13	15	20	25					5 44	
distanz min nax	ta dall'estre 1.5 3 50 50	mità tempi 5 50 58	rata in m 7 50 58	nm 9 49	11 48	13 48	15 48	20 48	25 47	47	47	46	45	5 44	
distanz min max Espans	ta dall'estre 1.5 3 50 50 58 58 sione Term	mità tempi 5 50 58 nica 10	rata in m 7 50 58 0-6 • K-1	nm 9 49	11 48 57	13 48 57 11.1	15 48 57 12.1	20 48 57 12.9	25 47 57 13.5	47 57	47 57	46	45	5 44	
distanz min max Espans Modulo	2a dall'estre 1.5 3 50 50 58 58 sione Term o Elastico	mità tempi 5 50 58 nica 10 long. G	rata in m 7 50 58 0-6 • K-1 Pa	nm 9 49	11 48 57 ► 220	13 48 57 11.1 205	15 48 57 12.1 195	20 48 57 12.9 185	25 47 57 13.5 175	47 57	47 57	46	45	5 44	
min max Espans Modulo Modulo	a dall'estre 1.5 3 50 50 58 58 sione Term o Elastico o Elastico	shica 10 cong. Glang. Glang. Glang.	rata in m 7 50 58 0-6 • K-1 Pa	nm 9 49	11 48 57 ▶ 220 88	13 48 57 11.1	15 48 57 12.1	20 48 57 12.9	25 47 57 13.5	47 57	47 57	46	45	5 44	
nin max Espans Modulo Modulo Calore	a dall'estre 1.5 3 50 50 58 58 sione Term o Elastico o Elastico Specifico	5 50 58 nica 10 ong. Glang. Gl	rata in m 7 50 58 0-6 • K-1 Pa Pa (Kg•K)	nm 9 49	11 48 57 ▶ 220 88 460	13 48 57 11.1 205	15 48 57 12.1 195	20 48 57 12.9 185	25 47 57 13.5 175	47 57	47 57	46	45	5 44	
min max Espans Modulo Modulo Calore Condu	a dall'estre 1.5	stang. Glambara Winica	rata in m 7 50 58 0-6 • K-1 Pa Pa (Kg•K) //(m•K)	nm 9 49	11 48 57 ▶ 220 88 460 38	13 48 57 11.1 205	15 48 57 12.1 195	20 48 57 12.9 185	25 47 57 13.5 175	47 57	47 57	46	45	5 44	
min max Espans Modulo Calore Condu Massa	a dall'estre 1.5 3 50 50 58 58 sione Term o Elastico o Elastico o Ejectifico o Cicibilità Ter	mità tempi 5 50 58 nica 10 long. Gl tang. Gl tang. W	7 50 58 0-6 • K-1 Pa Pa (Kg•K) //(m•K)	9 49 57	11 48 57 220 88 460 38 7.85	13 48 57 11.1 205	15 48 57 12.1 195	20 48 57 12.9 185	25 47 57 13.5 175	47 57	47 57	46	45	5 44	
min max Espans Modulo Calore Condu Massa Resisti	a dall'estre 1.5 3 50 50 58 58 sione Term o Elastico o Elastico o Elastico o Cibilità Ter Volumica ività Elettri	mità tempi 50 58 nica 10 long. Gl tang. G mica W Ko ca Ol	rata in m 7 50 58 3-6 • K-1 Pa Pa (Kg•K) //(m•K) ///dm³ hm•mm²	nm 9 49 57	11 48 57 220 88 460 38 7.85 0.19	13 48 57 11.1 205	15 48 57 12.1 195	20 48 57 12.9 185	25 47 57 13.5 175	47 57	47 57	46	45	5 44	
min max Espans Modulo Calore Condu Massa Resisti Condu	a dall'estre 1.5 3 50 50 58 58 sione Term o Elastico o Elastico o Ejectifico o Cicibilità Ter	mità tempi 50 58 nica 10 long. Gl tang. G mica W Ko ca Ol	7 50 58 0-6 • K-1 Pa Pa (Kg•K) //(m•K)	nm 9 49 57	11 48 57 220 88 460 38 7.85 0.19 5.26	13 48 57 11.1 205 78	15 48 57 12.1 195 75	20 48 57 12.9 185 70	25 47 57 13.5 175 67	47 57 13.9	47 57 14.1	46	45	5 44	
min max Espans Modulo Calore Condu Massa Resisti Condu	ta dall'estre 1.5 3 50 50 58 58 sione Term o Elastico o Elastico o Elastico o Elastico c Specifico ucibilità Ter Volumica ività Elettri	mità tempi 5 50 58 nica 10 long. Gl tang. Gl Winica W Ko ca Ol trica Si	rata in m 7 50 58 0-6 • K-1 Pa Pa (Kg•K) //(m•K) g/dm³ hm•mm² emens•r	9 49 57	11 48 57 220 88 460 38 7.85 0.19 5.26 20	13 48 57 11.1 205 78	15 48 57 12.1 195	20 48 57 12.9 185	25 47 57 13.5 175	47 57	47 57	46	45	5 44	
min max Espans Modulo Calore Condu Massa Resisti Condu	a dall'estre 1.5 3 50 50 58 58 sione Term o Elastico o Elastico o Elastico o Cibilità Ter Volumica ività Elettri	mità tempi 5 50 58 nica 10 long. Gl tang. Gl Winica W Ko ca Ol trica Si	rata in m 7 50 58 0-6 • K-1 Pa Pa (Kg•K) //(m•K) g/dm³ hm•mm² emens•r	9 49 57	11 48 57 220 88 460 38 7.85 0.19 5.26 20	13 48 57 11.1 205 78 100 °C	15 48 57 12.1 195 75	20 48 57 12.9 185 70	25 47 57 13.5 175 67	47 57 13.9	47 57 14.1	46	45	5 44	
min max Espans Modulo Calore Condu Massa Resisti Condu °C Il simbo	ta dall'estre 1.5 3 50 50 58 58 sione Term o Elastico o Elastico o Elastico o Elastico c Specifico ucibilità Ter Volumica ività Elettri	mità tempi 5 50 58 nica 10 long. Gl tang. Gl W Ko ca Ol trica Si a fra 20 °C ima di es	rata in m 7 50 58 D-6 • K-1 Pa Pa (Kg•K) //(m•K) //dm³ hm•mm² emens•r	9 49 57	11 48 57 220 88 460 38 7.85 0.19 5.26 20	13 48 57 11.1 205 78 100 °C	15 48 57 12.1 195 75 200	20 48 57 12.9 185 70	25 47 57 13.5 175 67	47 57 13.9 500	47 57 14.1	46	45	5 44	
min max Espans Modulo Calore Condu Massa Resisti Condu °C Il simbo Tempe da -40	a dall'estre 1.5 3 50 50 58 58 sione Term o Elastico o Elastico o Elastico o Elastico o Elastico i Specifico icibilità Ter Volumica ività Elettri ittività Elet colo ▶ indica	mità tempi 50 58 nica 10 long. Gl dang. Gl tang. W Kç ca Ol trica Si a fra 20 °C ima di es -70 °C	rata in m 7 50 58 0-6 • K-1 Pa Pa (Kg•K) //(m•K) g/dm³ hm•mm² emens•r	9 49 57	11 48 57 220 88 460 38 7.85 0.19 5.26 20	13 48 57 11.1 205 78	15 48 57 12.1 195 75 200	20 48 57 12.9 185 70 300	25 47 57 13.5 175 67 400 ssima di ax +650	47 57 13.9 500	47 57 14.1	46	45	5 44	
min max Espans Modulo Calore Condu Massa Resisti Condu C I simbo Tempe da -40 Resiste	a dall'estre 1.5 3 50 50 58 58 sione Term o Elastico o Elastico o Elastico o Elastico o Concibilità Ter volumica ività Elettri ittività Elet colo ➤ indica eratura min	mità tempi 5 50 58 nica 10 long. Gl cang. Gl winca W Ko ca Ol trica Si a fra 20 °C ima di es -70 °C corrosione resistenza	rata in m 7 50 58 0-6 • K-1 Pa Pa (Kg•K) //(m•K) g/dm³ hm•mm² emens•r c e 100 ° ercizio	9 49 57 2/m m/mm ² C, 20 °C	11 48 57 220 88 460 38 7.85 0.19 5.26 20 C e 200	13 48 57 11.1 205 78 100 °C	15 48 57 12.1 195 75 200 200 empera a +600 avorazio	20 48 57 12.9 185 70 300 tura mac °C a mac one a free	25 47 57 13.5 175 67 400 ssima di ax +650 eddo bile allo s	47 57 13.9 500 esercizi	47 57 14.1	46	45	5 44	
min max Espans Modulo Calore Condu Massa Resisti Condu C I simbo Tempe da -40 Resiste Acciaio Viene o	a dall'estre 1.5 3 50 50 58 58 sione Term o Elastico o Elastico o Elastico o Elastico o Concibilità Ter volumica ività Elettri ittività Elettri olo ➤ indica eratura min o °C a max enza alla c o con bassa consigliato o	mità tempi 50 58 nica 10 long. Gl dang. Gl dang. Gl mica W Ko ca Ol trica Si a fra 20 °C ima di esi -70 °C orrosione resistenza un rivestim	rata in m 7 50 58 0-6 • K-1 Pa Pa (Kg•K) //(m•K) g/dm³ hm•mm² emens•r c e 100 ° ercizio	9 49 57 2:/m m/mm² C, 20 °C	11 48 57 220 88 460 38 7.85 0.19 5.26 20 C e 200	13 48 57 11.1 205 78 100 °C	15 48 57 12.1 195 75 200 empera a +600 avorazio acilment cossiede	20 48 57 12.9 185 70 300 tura ma: °C a ma one a froe e lavora duona d	25 47 57 13.5 175 67 400 ssima di ax +650 eddo bile allo s uttilità	47 57 13.9 500 esercizi	47 57 14.1 600	46 57	45 57	5 44	normale
min max Espans Modulo Calore Condu Massa Resisti Condu C I simbo Tempe da -40 Resiste	a dall'estre 1.5 3 50 50 58 58 sione Term o Elastico o Elastico o Elastico o Elastico o Concibilità Ter volumica ività Elettri ittività Elettri olo ➤ indica eratura min o °C a max enza alla c o con bassa consigliato o	mità tempi 50 58 nica 10 ong. Gl dang. Gl tang. W Ko ca Ol trica Si a fra 20 °C ima di esi -70 °C orrosione resistenza un rivestim	rata in m 7 50 58 0-6 • K-1 Pa Pa (Kg•K) //(m•K) g/dm³ hm•mm² emens•r c e 100 ° ercizio	9 49 57 2:/m m/mm² C, 20 °C	11 48 57 220 88 460 38 7.85 0.19 5.26 20 C e 200	13 48 57 11.1 205 78 100 °C T d L F	15 48 57 12.1 195 75 200 empera a +600 avorazio acilment cossiede	20 48 57 12.9 185 70 300 tura mac °C a mac one a free	25 47 57 13.5 175 67 400 ssima di ax +650 eddo bile allo s uttilità	47 57 13.9 500 esercizi	47 57 14.1 600 ito	46	45 57	5 44	normale